Modulation of intracellular Ca²⁺ in the parathyroid cell

Release of Ca²⁺ from non-mitochondrial pools by inositol trisphosphate

Paul A. Epstein, Mark Prentki and Maurice F. Attie*

Endocrine Section, Department of Medicine and Department of Biochemistry, University of Pennsylvania, 531 Johnson Pavillion, Philadelphia, PA 19104, USA

Received 3 June 1985

Stimuli which enhance secretion from parathyroid cells such as low extracellular Ca²⁺ or Mg²⁺ are associated with a decrease in the cytosolic Ca²⁺ concentration as measured by quin2. Current evidence suggests that increased production of inositol 1,4,5-triphosphate (IP₃) releases Ca²⁺ from cellular stores thus increasing cytosolic Ca²⁺. We used saponin-permeabilized dispersed bovine parathyroid cells to study the effect of IP₃ on intracellular Ca²⁺. IP₃ released Ca²⁺ from these cells in a dose-dependent manner; half-maximal response occurred with 0.3 μ M IP₃ and maximal response with 1.2 μ M IP₃. Permeabilized cells incubated in the presence of the mitochondrial inhibitor antimycin A released a similar amount of Ca²⁺ suggesting that IP₃ releases Ca²⁺ from a non-mitochondrial pool. These results suggest that IP₃ regulates cytosolic Ca²⁺ in this system and may function as a second messenger controlling hormone secretion.

Inositol trisphosphate Cytosolic Ca2+ Parathyroid cell Ca2+ electrode Phospholipid

1. INTRODUCTION

Several recent studies suggest that inositol phospholipids play a role in the transduction of extracellular signals. In many cell types a variety of extracellular signals induce the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns (4,5)P₂) to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP₃) [1]. DAG activates protein kinase C within the plasma membrane [1] whereas IP₃ is released into the cytoplasm where it presumably increases cytosolic Ca²⁺ by releasing Ca²⁺ from intracellular stores [2-4]. These stores are probably not mitochondrial but may be within the endoplasmic reticulum [4,5]. In most cell types an increase in cytosolic Ca2+ concentration is associated with exocytosis [6]. The parathyroid cell is unique in that stimuli which enhance secretion such as low extracellular Ca²⁺ or Mg²⁺, are associated with a decrease in cytosolic Ca²⁺ as measured using the Ca²⁺ dye quin2, suggesting that cytosolic Ca²⁺ modulates hormone secretion [7]. The possible role of IP₃ in the Ca²⁺ homeostasis of this system is therefore particularly intriguing.

We used permeabilized dispersed bovine parathyroid cells to study the effect of IP₃ on intracellular Ca²⁺ pools. Our results indicate that IP₃ releases Ca²⁺ from non-mitochondrial pools which presumably increases cytosolic Ca²⁺.

2. MATERIALS AND METHODS

Dispersed bovine parathyroid cells were prepared by collagenase digestion of calf parathyroid glands using a modification of the technique in [8]. Viability as assessed by trypan blue exclusion was greater than 95% and red blood cell contamination

^{*} To whom correspondence should be addressed

was less than 10%. Prior to use, the cells were washed 3 times in Ca^{2+} and Mg^{2+} -free Hanks basal salt solution (4°C, pH 7.2), and kept on ice at a concentration of $2 \times 10^8/\text{ml}$ (<2 h).

For determination of Ca2+ sequestration and release, 2×10⁶ cells were incubated at 30°C in 0.2 ml of medium with a cation composition similar to cytosol (110 mM KCl, 10 mM NaCl, 2 mM KH₂PO₄, 1 mM MgCl₂) with 25 mM Hepes (pH 7.0), 1 µg/ml oligomycin, 2 mM MgATP, and an ATP-regenerating system consisting of 5.0 mM phosphocreatine, and 20 units/ml creatine kinase (basic medium). Plasma membranes were permeabilized with saponin (60 µg/ml). Experiments with functioning mitochondria and endoplasmic reticulum were performed in basic medium plus 5.0 mM succinate and 1 μ M rotenone. Antimycin A $(0.2 \mu M)$ was added to the basic medium to produce cells with nonfunctioning mitochondria. Medium Ca2+ concentration was measured with a sensitive minielectrode as described [9]. None of the compounds tested interfered with the measurement of Ca2+. All experiments were repeated 3 times using different cell preparations. The traces shown are representative of all experiments.

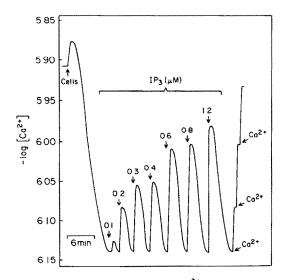


Fig.1. Effect of IP₃ on medium Ca^{2+} concentration in the presence of permeabilized bovine parathyroid cells with functioning mitochondria. Permeabilized cells were incubated in basic medium plus 5.0 mM succinate and 1 μ M rotenone. Ca^{2+} release from cells was calibrated at the end of the experiment by repeated additions of 0.2 nmol Ca^{2+} .

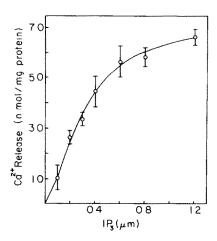


Fig.2. Concentration-dependence of IP₃-induced Ca²⁺ release. Cells were incubated as described in fig.1. Ca²⁺ release in response to IP₃ was calibrated by addition of known amounts of Ca²⁺ and is expressed per mg cellular protein. Points represent the mean ± SE of 3 experiments performed with different cell preparations.

IP₃ and inositol 1,4-bisphosphate (IP₂) were produced by alkaline hydrolysis of ox brain Ptd (4,5)P₂ and purified by paper chromatography [10] by Dr R.F. Irvine, Cambridge, England. Cellular protein was determined by the Coomassie blue method (Bio-Rad, Rockville Center, New York).

3. RESULTS

When parathyroid cells with functioning mitochondria were permeabilized, medium Ca2+ concentration fell within 10 min from approx. 10^{-5.9} M (1.25 μ M) to 10^{-6} M (0.60 μ M), indicating that Ca2+ was being sequestered into cellular stores (fig.1). These cells rapidly released Ca2+ into the medium in response to IP3 in a dose-dependent manner (figs.1 and 2). Half-maximal response occurred with 0.3 µM IP3 and maximal response with 1.2 µM IP₃. In the absence of cells, IP₃ increased medium Ca²⁺ less than 5% of that seen with cells, thus excluding contamination of the IP3 as the source of Ca2+. Maximal increase in medium Ca2+ concentration occurred within 45 s; thereafter, Ca2+ was re-accumulated into cellular stores, and medium Ca²⁺ concentration returned to baseline within 10 min. The cells responded to repeated additions of IP3 and each Ca2+ release was followed by complete re-uptake.

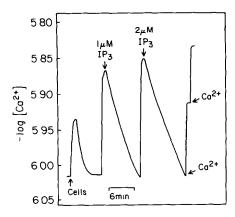


Fig. 3. Effect of IP₃ on the medium Ca^{2+} concentration maintained by the non-mitochondrial compartment of permeabilized bovine parathyroid cells. Permeabilized cells were incubated in basic medium plus 0.2 μ M antimycin A. Ca^{2+} release from cells was calibrated at the end of the experiment by repeated additions of 0.2 nmol Ca^{2+}

To determine if IP₃, or instead, one of its metabolites was the compound releasing Ca^{2+} , the release of Ca^{2+} in response to IP₂, the first metabolite of IP₃ was measured. IP₂ (0.8 μ M) released less than 10% of the Ca^{2+} released by the same concentration of IP₃ (0.52 vs 6.11 nmol Ca^{2+}/mg cellular protein).

Permeabilized parathyroid cells incubated in the presence of the mitochondrial inhibitor antimycin A also lowered medium Ca^{2+} concentration to less than 10^{-6} M. IP₃ (1.0 μ M) resulted in maximal release of Ca^{2+} from these cells (fig.3) and released the same amount of Ca^{2+} as 1.2 μ M IP₃ added to cells with functioning mitochondria (7.8 \pm 1.91 vs 6.64 \pm 0.33 nmol Ca^{2+} /mg cellular protein).

4. DISCUSSION

These data show that IP₃ releases Ca^{2+} from cellular stores in bovine parathyroid cells. IP₃ released Ca^{2+} equally from cells incubated in the presence of the mitochondrial inhibitor antimycin A indicating that Ca^{2+} was released from a non-mitochondrial pool. The concentration of IP₃ which evoked the half-maximal Ca^{2+} release (0.3 μ M) was similar to that observed in other types of permeabilized cells [2,11,12]. Permeabilized parathyroid cells responded to repeated additions of IP₃ in accord with observations in permeabilized

hepatocytes [3,12] and insulinoma cells [11] suggesting that Ca²⁺ is re-sequestered in an IP₃-sensitive pool.

IP₃ may play a physiologic role in the regulation of parathyroid hormone (PTH) secretion. Estimates of IP₃ concentrations in hepatocytes using myo-[3H]inositol labeling indicate that these concentrations are similar to those stimulating Ca²⁺ release from permeabilized bovine parathyroid cells [1]. Furthermore, Ca²⁺ release in response to IP₃ occurred within seconds which is similar to the response time of cytosolic Ca²⁺ in quin2-loaded parathyroid cells to changes in extracellular Ca²⁺ [7]. Although re-uptake of Ca²⁺ after IP₃ addition requires several minutes, this delay may reflect the time needed for a small number of cells to degrade the large amount of IP3 contained in the incubation medium. Recent evidence suggests that Ca2+ re-uptake may be consequent to the degradation of added IP₃ [3,11].

IP₃ could modulate PTH secretion by several mechanisms. High extracellular Ca²⁺ may accelerate hydrolysis of Ptd(4,5)P₂ with a resulting increase in IP₃ and DAG. IP₃ would release stored Ca²⁺ and increase cytosolic Ca²⁺ thereby inhibiting PTH secretion. Alternatively, low extracellular Ca²⁺ may accelerate IP₃ degradation (and decrease hydrolysis of Ptd(4,5)P₂), lowering cytosolic IP₃ and Ca²⁺ and stimulating PTH secretion

The role of DAG in modulating PTH secretion has only been indirectly studied by Brown et al. [13] and Morrissey [14]. These investigators reported that phorbol esters, which, like DAG presumably activate protein kinase C [1], stimulate PTH secretion from bovine parathyroid cells. This finding is the opposite of that predicted by either model proposed above. Phorbol esters are not a physiologic stimulus, however, and the role of DAG, if any, in modulating PTH secretion remains to be determined.

Clarification of the physiologic role of IP₃ in modulating cytosolic Ca²⁺ and hormone secretion in the parathyroid cell will require further studies including direct measurement of intracellular IP₃ in concert with changes in PTH secretion.

ACKNOWLEDGEMENTS

Support for this study was provided by grants

AM 19525-09, 5R01 AM 32325-03, and 1R01 AM 3826.

REFERENCES

- [1] Berridge, M.J. and Irvine, R.F. (1984) Nature 312, 315-321.
- [2] Streb, H., Irvine, R.F., Berridge, M.J. and Schulz, I. (1983) Nature 306, 67-69.
- [3] Joseph, S.K., Thomas, A.P., Williams, R.J., Irvine, R.F. and Williamson, J.R. (1984) J. Biol. Chem. 259, 3077-3081.
- [4] Prentki, M., Biden, T.J., Janjic, D., Irvine, R.F., Berridge, M.J. and Wollheim, C.B. (1984) Nature 309, 562-564.
- [5] Streb, H., Bayerdorffer, E., Hasse, W., Irvine, R.F. and Schulz, I. (1984) J. Membrane Biol. 81, 241-253.

- [6] Douglas, W.W. (1978) Ciba Found. Symp. 54, 61-90.
- [7] Shoback, D.M., Thatcher, J., Leombruno, R. and Brown, E.M. (1983) Endocrinology 113, 424-426.
- [8] Brown, E.M., Hurwitz, S. and Aurbach, G.D. (1976) Endocrinology 99, 1582-1588.
- [9] Prentki, M., Janjic, D. and Wollheim, C.B. (1983)J. Biol. Chem. 258, 7597-7602.
- [10] Irvine, R.F., Brown, K.D. and Berridge, M.J. (1984) Biochem. J. 221, 269-272.
- [11] Biden, T.J., Prentki, M., Irvine, R.F., Berridge, M.J. and Wollheim, C.B. (1984) Biochem. J. 223, 467-473.
- [12] Burgess, G.M., Godfrey, P.P., McKinney, J.S., Berridge, M.J., Irvine, R.F. and Putney, J.W., jr (1984) Nature 306, 63-66.
- [13] Brown, E.M., Redgrave, J. and Thatcher, J. (1984) FEBS Lett. 175, 72-75.
- [14] Morrissey, J. (1984) Clin. Res. 32, 404A (abstr.).